Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.024
1.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 107-112, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678615

Parkinson's disease (PD) is defined as a progressive neurodegenerative disease in middle-aged and elderly people. The therapeutic effect of ω-3 PUFAs in several neurodegenerative diseases has been well recognized. Nevertheless, whether nutrition supplementing ω-3 PUFAs exerts a neuroprotective role in PD remains elusive. Bioinformatics revealed 2D chemical structural formula of three components. Mice received indicated treatment with saline, MPTP or ω-3 PUFAs according to grouping. Behavioral function of mice was measured through motor tests such as rearing, akinesia, and rotarod tests. OFT test measured anxiety-like behaviors of mice. Western blotting and TUNEL staining measured dopaminergic fibers and neurons of mice. Western blotting measured inflammation and apoptosis-related protein levels in mouse tissue. FACS measured iTreg cell proportion in colon and brain tissues of mice. ω-3 PUFAs repaired MPTP-stimulated motor function damage in PD mice. ω-3 PUFAs mitigated MPTP-stimulated comorbid anxiety in PD mice. ω-3 PUFAs relieved MPTP-stimulated deficits of dopaminergic fibers and neurons in PD mice. ω-3 PUFAs repressed MPTP-stimulated inflammation and apoptosis pathway activation in PD mice. ω-3 PUFAs repaired MPTP-stimulated immune function damage in PD mice. ω-3 PUFAs exert a protective role in PD mice through alleviating motor function impairment and neuroinflammation by increasing intestinal inducible Treg cells, which may provide a new direction for seeking targeted therapy plans for PD in humans.


Disease Models, Animal , Fatty Acids, Omega-3 , Mice, Inbred C57BL , Parkinson Disease , T-Lymphocytes, Regulatory , Animals , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Intestines/drug effects , Intestines/pathology , Behavior, Animal/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism
2.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 100-106, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678620

Nervonic acid (NA) is a primary long-chain fatty acid and has been confirmed to have neuroprotective effects in neurologic diseases. Oxidative stress and neuronal damage are the main causes of Parkinson's disease (PD). This study mainly explored whether NA is involved in regulating oxidative stress and apoptosis in MPTP-induced mouse model and MPP-induced cell model. Through behavior tests, we proved that MPTP-induced motor dysfunction in mice was recovered by NA treatment. NA can reduce MPTP-induced neuronal damage, manifested by elevated levels of TH and dopamine, as well as decreased levels of α-syn. In the in vitro model, we observed from CCK8 assay and flow cytometry that the induction of MPP markedly suppressed cell activity and enhanced cell apoptosis, but these functions were all reversed by NA. Furthermore, NA administration reversed the increase in ROS production and MDA levels induced by MPTP or MPP, as well as the decrease in SOD levels, suggesting the antioxidant properties of NA in PD. Meanwhile, we confirmed that NA can regulate oxidative stress and neuronal damage by activating the MEK/ERK pathway. Overall, we concluded that NA could alleviate MPTP-induced PD via MEK/ERK pathway.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Apoptosis , MAP Kinase Signaling System , Mice, Inbred C57BL , Oxidative Stress , Animals , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Male , Mice , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Disease Models, Animal , Dopamine/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
3.
Mol Biol Rep ; 51(1): 593, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683404

BACKGROUND: Parkinson's disease (PD) is a common central nervous system neurodegenerative disease. Neuroinflammation is one of the significant neuropathological hallmarks. As a traditional Chinese medicine, Safranal exerts anti-inflammatory effects in various diseases, however, whether it plays a similar effect on PD is still unclear. The study was to investigate the effects and mechanism of Safranal on PD. METHODS: The PD mouse model was established by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine MPTP firstly. Next, the degree of muscle stiffness, neuromuscular function, motor retardation and motor coordination ability were examined by observing and testing mouse movement behavior. Immunofluorescence staining was used to observe the expression of tyrosine hydroxylase (TH). The dopamine (DA) content of the striatum was detected by High-performance liquid chromatography (HPLC). The expression of TH and NLRP3 inflammasome-related markers NLRP3, IL-1ß, and Capase-1 were detected by Real-time Polymerase Chain Reaction (qRT-PCR) and western blotting (WB) respectively. RESULTS: Through behavioral testing, Parkinson's mouse showed a higher muscle stiffness and neuromuscular tension, a more motor retardation and activity disorders, together with a worse motor coordination compared with sham group. Simultaneously, DA content and TH expression in the striatum were decreased. However, after using Safranal treatment, the above pathological symptoms of Parkinson's mouse all improved compared with Safranal untreated group, the DA content and TH expression were also increased to varying degrees. Surprisingly, it observed a suppression of NLRP3 inflammation in the striatum of Parkinson's mouse. CONCLUSIONS: Safranal played a neuroprotective effect on the Parkinson's disease and its mechanism was related to the inhibition of NLRP3 inflammasome activation.


Cyclohexenes , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroprotective Agents , Parkinson Disease , Terpenes , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Terpenes/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Male , Cyclohexenes/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice, Inbred C57BL , Inflammation/drug therapy , Inflammation/metabolism , Dopamine/metabolism , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Interleukin-1beta/metabolism , Tyrosine 3-Monooxygenase/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Caspase 1/metabolism
4.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574977

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Dopaminergic Neurons , Ferroptosis , Mitophagy , Parkinson Disease , Sodium-Potassium-Exchanging ATPase , Animals , Mitophagy/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Humans , Male , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Haploinsufficiency , Mice, Knockout
5.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Article En | MEDLINE | ID: mdl-38627469

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor , Macrophages , Microglia , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Mice , Macrophages/metabolism , Microglia/metabolism , Male , Parkinson Disease/therapy , Parkinson Disease/metabolism , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Exosomes/metabolism , Substantia Nigra/metabolism
6.
J Cell Physiol ; 239(5): e31250, 2024 May.
Article En | MEDLINE | ID: mdl-38477420

Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.


Ferroptosis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Microglia , Neuroinflammatory Diseases , Parkinson Disease , Signal Transduction , Ferroptosis/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Humans , Male , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Cell Line , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Disease Models, Animal , NF-kappa B/metabolism
7.
Phytomedicine ; 127: 155494, 2024 May.
Article En | MEDLINE | ID: mdl-38471370

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Triterpenes , Mice , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , Neuroprotection , Neuroinflammatory Diseases , Molecular Docking Simulation , Microglia , Parkinson Disease/metabolism , Dopaminergic Neurons , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 270-279, 2024 Feb 20.
Article Zh | MEDLINE | ID: mdl-38501412

OBJECTIVE: To investigate the protective effect of resveratrol on intestinal barrier in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse models and its mechanism for regulating TLR4/MyD88/NF-κB signaling to protect dopaminergic neurons. METHODS: Fifty-two C57BL/6J mice were randomized into control group (n= 12), MPTP group (n=14), MPTP + resveratrol (30 mg/kg) group (n=13), and MPTP + resveratrol (90 mg/kg) group (n=13), and mouse models were established by intraperitoneal MPTP (30 mg/kg) injection for 7 days in the latter 3 groups. Behavioral tests were conducted to evaluate the effect of resveratrol on motor symptoms of the mice. Western blotting was used to detect the expression of TH, α-syn, ZO-1, Claudin-1, TLR4, MyD88, and NF-κB in the brain tissues of the mice. Immunohistochemistry, immunofluorescence, ELISA and transmission electron microscopy were used to verify the effect of resveratrol for suppressing inflammation and protecting the intestinal barrier. RESULTS: Compared with those in the normal control group, the mice in MPTP group showed significant changes in motor function, number of dopaminergic neurons, neuroinflammation, levels of LPS and LBP, and expressions of tight junction proteins in the intestinal barrier. Resveratrol treatment significantly improved motor function of the PD mice (P < 0.01), increased the number of neurons and TH protein expression (P < 0.05), down-regulated the expressions of GFAP, Iba-1, and TLR4, lowered fecal and plasma levels of LPS and LBP (P < 0.05), restored the expression levels of ZO-1 and Claudin-1 (P < 0.01), and down-regulated the expressions of TLR4, MyD88, and NF-κB in the colon tissue (P < 0.05). The mice with resveratrol treatment at 30 mg/kg showed normal morphology of the tight junction complex with neatly and tightly arranged intestinal villi. CONCLUSION: Resveratrol repairs the intestinal barrier by inhibiting TLR4/MyD88/NF-κB signaling pathway-mediated inflammatory response, thereby improving motor function and neuropathy in mouse models of MPTP-induced PD.


Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Dopaminergic Neurons/metabolism , Resveratrol/pharmacology , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Brain-Gut Axis , Lipopolysaccharides/pharmacology , Claudin-1/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Mice, Inbred C57BL , Signal Transduction , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
9.
Physiol Res ; 73(1): 139-155, 2024 03 11.
Article En | MEDLINE | ID: mdl-38466012

Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.


Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/metabolism , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
10.
Comput Biol Med ; 171: 108200, 2024 Mar.
Article En | MEDLINE | ID: mdl-38428099

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS: To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS: We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS: Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.


COVID-19 , Parkinson Disease , Animals , Mice , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Molecular Docking Simulation , Pandemics , SARS-CoV-2 , Disease Models, Animal
11.
J Agric Food Chem ; 72(11): 5734-5745, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38453725

Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons of the substantia nigra (SN), with neuroinflammation and mitochondrial dysfunction being key contributors. The neuroprotective potential of folic acid (FA) in the dopaminergic system of PD was assessed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. MPTP (20 mg/kg of body weight) was administered to C57BL/6J mice to simulate PD symptoms followed by FA treatment (5 mg/kg of body weight). Behavioral tests, pole, rotarod, and open-field tests, evaluated motor function, while immunohistochemistry, ELISA, RT-qPCR, and Western blotting quantified neuroinflammation, oxidative stress markers, and mitochondrial function. FA supplementation considerably improved motor performance, reduced homocysteine levels and mitigated oxidative damage in the SN. The FA-attenuated activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome lessened glial cell activity and reduced neuroinflammation. At the molecular level, FA reduced DNA damage, downregulated phosphorylated p53, and induced the expression of peroxisome proliferator-activated receptor α coactivator 1α (PGC-1α), enhancing mitochondrial function. Therefore, FA exerts neuroprotection in MPTP-induced PD by inhibiting neuroinflammation via NLRP3 inflammasome suppression and promoting mitochondrial integrity through the p53-PGC-1α pathway. Notable limitations of our study include its reliance on a single animal model and the incompletely elucidated mechanisms underlying the impact of FA on mitochondrial dynamics. Future investigations will explore the clinical utility of FA and its molecular mechanisms, further advancing it as a potential therapeutic for managing and delaying the progression of PD.


MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Dopaminergic Neurons , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , Neuroinflammatory Diseases , Tumor Suppressor Protein p53/metabolism , Mice, Inbred C57BL , Parkinson Disease/genetics , Mitochondria/metabolism , Body Weight , Disease Models, Animal , Neuroprotective Agents/pharmacology
12.
Methods Mol Biol ; 2761: 477-490, 2024.
Article En | MEDLINE | ID: mdl-38427256

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has a direct impact on the dopaminergic neurons in the substantia nigra pars compacta (SNpc), dopamine in the striatum (ST), homovanillic acid (HVA), neurotrophic factors of the SNpc, and ST regions leading to Parkinson's disease (PD). Dopaminergic neuron atrophy in the SNpc and dopamine degradation in the ST have an explicit link to disrupted homeostasis of the neurotrophic factor brain-derived neurotrophic factor (BDNF) of the SNpc and ST regions. Chrysin is a flavonoid with a pharmacological potential that directly influences neurotrophic levels as well as neurotransmitters. As a result, analysis of the altering levels of neurotransmitters such as dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), are observed via high-performance liquid chromatography (HPLC) and the confirmation of the influential role of BDNF and glial-derived neurotrophic factor (GDNF) in the homeostasis of dopamine, DOPAC, and HAV via examination of gene expression. The observation confirmed that chrysin balances the altering levels of neurotransmitters as well as neurotrophic factors. The protocols for reverse transcription-polymerase chain reaction (RT-PCR) and HPLC analysis for neurotransmitter levels from the SNpc and ST regions of acute PD mice brain-induced MPTP are described in this chapter.


Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Homovanillic Acid/metabolism , Substantia Nigra/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Corpus Striatum/metabolism , Neurotransmitter Agents/metabolism , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Tyrosine 3-Monooxygenase/metabolism
13.
Free Radic Biol Med ; 216: 60-77, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479634

Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.


Deoxyadenosines , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Neuroinflammatory Diseases , Proteomics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects
14.
Neurochem Int ; 174: 105691, 2024 Mar.
Article En | MEDLINE | ID: mdl-38311217

Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.


Bifidobacterium breve , Neuroprotective Agents , Parkinson Disease , Probiotics , Rats , Female , Humans , Animals , Mice , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Oxidative Stress , Probiotics/pharmacology , Probiotics/therapeutic use , Dietary Supplements , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
15.
Neuroreport ; 35(3): 175-184, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38305108

Parkinson's disease (PD) is a disorder of neurodegeneration. Imperatorin is an active natural furocoumarin characterized by antioxidant, anti-inflammatory, and potent vasodilatory properties. Therefore, we aimed to investigate the biological functions of imperatorin and its mechanisms against PD progression. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) daily for 5 consecutive days to mimic PD conditions in vivo. The MPTP-induced PD model mice were intraperitoneally injected with imperatorin (5 mg/kg) for 25 consecutive days after MPTP administration. The motor and cognitive functions of mice were examined by rotarod test, hanging test, narrow beam test and Morris water maze test. After analysis of MWM test, the expression levels of tyrosine hydroxylase and Iba-1 in the substantia nigra pars compacta were measured by immunohistochemistry staining, immunofluorescence staining and western blotting. The expression levels of striatal dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were also measured. The protein levels of inducible nitric-oxide synthase, cyclooxygenase-2, phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (Akt) in the mouse striatum were estimated by western blotting. The expression levels of proinflammatory cytokines including tumor necrosis factor, interleukin (IL)-1ß and IL-6 in the mouse striatum were measured by ELISA kits. The expression levels of superoxide dismutase, malondialdehyde and glutathione in the mouse midbrains were measured with commercially available kits. TUNEL staining was performed to identify the apoptosis of midbrain cells. Histopathologic changes in the mouse striata were assessed by hematoxylin-eosin staining. Imperatorin treatment markedly improved spatial learning and memory abilities of MPTP-induced PD mice. The MPTP-induced dopaminergic neuron loss in the mouse striata was inhibited by imperatorin. Imperatorin also suppressed neuroinflammation and neuronal oxidative stress in the midbrains of MPTP-induced PD mice. Mechanistically, imperatorin treatment inhibited the MPTP-induced reduction in the PI3K/Akt pathway. Imperatorin treatment can prevent dopaminergic neuron degeneration and improve cognitive functions via its potent antioxidant and anti-inflammatory properties in an MPTP-induced PD model in mice by regulating the PI3K/Akt pathway.


Furocoumarins , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Neuroinflammatory Diseases , Antioxidants/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Mice, Inbred C57BL , Signal Transduction , Furocoumarins/pharmacology , Furocoumarins/therapeutic use , Dopamine/metabolism , Anti-Inflammatory Agents/pharmacology , Oxidative Stress , Disease Models, Animal , Dopaminergic Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
16.
Neuroscience ; 540: 38-47, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38242280

Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.


Neuroprotective Agents , Parkinson Disease , Animals , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Apoptosis , Autophagy , Clusterin/metabolism , Clusterin/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Parkinson Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
17.
J Nutr Biochem ; 126: 109586, 2024 Apr.
Article En | MEDLINE | ID: mdl-38262563

Parkinson's disease (PD) is an incurable neurological disorder that causes typical motor deficits. In this study, we investigated the effects of creatine supplementation and exercise in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found that 2% creatine supplementation and/or exercise intervention for 4 weeks elicited neurobehavioral recovery and neuroprotective effects regarding dopaminergic cell loss in MPTP-treated mice; this effect implies functional preservation of dopaminergic cells in the substantia nigra, as reflected by tyrosine hydroxylase expression recovery. Creatine and exercise reduced necroptotic activity in dopaminergic cells by lowering mixed lineage kinase domain-like protein (MLKL) modification to active phenotypes (phosphorylation at Ser345 and oligomerization) and phosphorylated receptor-interacting protein kinase 1 (RIPK1) (Ser166-p) and RIPK3 (Ser232-p) levels. In addition, creatine and exercise reduced the MPTP-induced increase in pathogenic α-synuclein forms, such as Ser129 phosphorylation and oligomerization. Furthermore, creatine and exercise had anti-inflammatory and antioxidative effects in MPTP mice, as evidenced by a decrease in microglia activation, NF-κB-dependent pro-inflammatory molecule expression, and increase in antioxidant enzyme expression. These phenotypic changes were associated with the exercise/creatine-induced AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) and sirtuin 3 (SIRT3)/forkhead box O3 (FoxO3a) signaling pathways. In all experiments, combining creatine with exercise resulted in considerable improvement over either treatment alone. Consequently, these findings suggest that creatine supplementation with exercise has anti-inflammatory, antioxidative, and anti-α-synucleinopathy effects, thereby reducing necroptotic cell death in a PD mouse model.


Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , alpha-Synuclein/metabolism , Creatine/pharmacology , Creatine/therapeutic use , Necroptosis , Dopaminergic Neurons/metabolism , Neuroprotective Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Dietary Supplements , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
18.
Folia Neuropathol ; 62(1): 76-82, 2024.
Article En | MEDLINE | ID: mdl-38174675

This study investigated the protective effect of vanillin against Parkinson's disease (PD). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) was administered s.c. for 6 consecutive days to induce PD and mice were treated with vanillin (100 and 200 mg/kg, p.o.) for 15 days. Cognitive, motor and non-motor functions were assessed to evaluate the effect of vanillin in PD mice. Levels of dopamine and glutamate and activity of monoamine oxidaseB (MAO-B) were estimated in vanillin-treated PD mice. The effect of vanillin on the level of lipid peroxidation and superoxide dismutase in brain tissue of PD mice was estimated. Data of the study revealed that vanillin reversed the altered cognitive, motor and non-motor function in PD mice. Activity of MAO-B and neurochemical level were attenuated with vanillin in PD mice. Inflammatory cytokines, nuclear factor kappa B (NF-kB) and Toll-like receptor 4 (TLR-4) levels were lower in the vanillin-treated group compared to the PD group of mice. Data of the study suggest that vanillin protects against neuronal injury and recovers the altered behaviour in PD mice by regulating neurochemical balance and the TLR-4/NF-kB pathway.


Benzaldehydes , Oxidative Stress , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/drug effects , Benzaldehydes/pharmacology , Oxidative Stress/drug effects , Mice , Male , Inflammation/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Brain/drug effects , Brain/metabolism , Parkinson Disease/metabolism , Parkinson Disease/drug therapy
19.
Food Funct ; 15(3): 1460-1475, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38226659

Parkinson's disease (PD), a neurodegenerative disease, is the leading cause of movement disorders. Neuroinflammation plays a critical role in PD pathogenesis. Neohesperidin (Neo), a natural flavonoid extracted from citric fruits exhibits anti-inflammatory effects. However, the effect of Neo on PD progression is unclear. This study aimed to investigate the effects of Neo on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and its underlying mechanism. Our results indicated that Neo administration ameliorated motor impairment and neural damage in MPTP-injected mice, by inhibiting neuroinflammation and regulating gut microbial imbalance. Additionally, Neo administration reduced colonic inflammation and tissue damage. Mechanistic studies revealed that Neo suppressed the MPTP-induced inflammatory response by inhibiting excessive activation of NF-κB and MAPK pathways. In summary, the present study demonstrated that Neo administration attenuates neurodegeneration in MPTP-injected mice by inhibiting inflammatory responses and regulating the gut microbial composition. This study may provide the scientific basis for the use of Neo in the treatment of PD and other related diseases.


Gastrointestinal Microbiome , Hesperidin/analogs & derivatives , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Neurodegenerative Diseases/drug therapy , Neuroinflammatory Diseases , Parkinson Disease/metabolism , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Disease Models, Animal , Neuroprotective Agents/pharmacology
20.
Sci Rep ; 14(1): 1140, 2024 01 11.
Article En | MEDLINE | ID: mdl-38212417

Patients with Parkinson's disease (PD) have gastrointestinal motility disorders, which are common non-motor symptoms. However, the reasons for these motility disorders remain unclear. Increased alpha-synuclein (α-syn) is considered an important factor in peristalsis dysfunction in colonic smooth muscles in patients with PD. In this study, the morphological changes and association between serping1 and α-syn were investigated in the colon of the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced chronic PD model. Increased serping1 and α-syn were noted in the colon of the PD model, and decreased serping1 also induced a decrease in α-syn in C2C12 cells. Serping1 is a major regulator of physiological processes in the kallikrein-kinin system, controlling processes including inflammation and vasodilation. The kinin system also comprises bradykinin and bradykinin receptor 1. The factors related to the kallikrein-kinin system, bradykinin, and bradykinin receptor 1 were regulated by serping1 in C2C12 cells. The expression levels of bradykinin and bradykinin receptor 1, modulated by serping1 also increased in the colon of the PD model. These results suggest that the regulation of increased serping1 could alleviate Lewy-type α-synucleinopathy, a characteristic of PD. Furthermore, this study could have a positive effect on the early stages of PD progression because of the perception that α-syn in colonic tissues is present prior to the development of PD motor symptoms.


Gastrointestinal Diseases , Parkinson Disease , Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , alpha-Synuclein/metabolism , Bradykinin/pharmacology , Complement C1 Inhibitor Protein , Disease Models, Animal , Mice, Inbred C57BL , Receptors, Bradykinin
...